A. Irisbaev, Kh. M. Shakhidoyatov, and Ch. Sh. Kadyrov

UDC 547.944/945+547.856.1

Continuing investigations on the production of derivatives of deoxypeganine [1-3], we have performed the synthesis of the previously unknown 6,7-dimethoxydeoxypeganine and its analogs. The aminomethylation of 4-nitroveratrole (I) with N-hydroxymethylpyrrolidone (IIa), piperidone (IIb), and caprolactam (IIc) in concentrated sulfuric acid gave 4,5-dimethoxy-2-nitrobenzylpyrrolidone (IIIa), -piperidone (IIIb), and -caprolactam (IIIc), respectively. The reduction of (IIIa-c) with stannous chloride in hydrochloric acid gave the corresponding 2-amino-1,5-dimethoxybenzylpyrrolidone (IVa), -piperidone (IVb), and -caprolactam (IVc). On being treated with water-abstracting agents, compounds (IVa-c) cyclized into 6,7-dimethoxydeoxypeganine and its analogs (Va-c), which are difficult to obtain by other methods.

TABLE 1

11111111 T				
			R _f (chloroform-	mol. wt. (by
Reaction	Yield,	mp (solvent for recrys-	ether, 1:1,	mass spectros-
product	%	tallization), °C	A1 ₂ 0 ₃)	сору)
IIIa	10	104-105 (ethyl acetate+ hexane)	0.26	280
IIIb	9	152—154 (ethyl ace-		
		tate + hexane):	0,20	294
IIIc	7	146 (ethyl ace-		
		tate)	0.50	_
IVa	56	128-129 (ethyl acetate+		
		hexane)	0.06	250
IVb	39	96 (hexane)	0.05	_
ΙVc	50	109-110 (hexane)	0,26	_
Va	35	164-165 (benzene-		
		hexane)	0.05	232
Vb	43	84-86 (hexane)	0.05	246
Vc	44,4	124—125 (hexane)	0.19	260

Note: The yields of (IVa-c) were calculated on the (IIIa-c), and those of (Va-c) on the (IVa-c).

Institute of the Chemistry of Plant Substances, Academy of Sciences of the Uzbek SSR. Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 531-532, July-August, 1975. Original article submitted March 18, 1975.

© 1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

LITERATURE CITED

- 1. Kh. M. Shakhidoyatov, A. Irisbaev, and Ch. Sh. Kadyrov, Khim. Prirodn. Soedin., 681 (1974).
- (1974).2. Kh. M. Shakhidoyatov, A. Irisbaev, and Ch. Sh. Kadyrov, Dokl. Akad. Nauk, UzSSR, No. 2 (1975).
- 3. Kh. M. Shakhidoyatov, A. Irisbaev, and Ch. Sh. Kadyrov, Khim. Prirodn. Soedin., 435 (1975).